

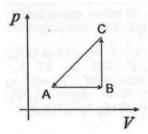
TERMODINÂMICA

CONTROLE			MARCADAS	DATA
Q: 15	A:	%:		

QUESTÃO 01 (PSC UFAM 2009)

Uma amostra de gás expande-se de 4,0 até $10,0\ m^3$ ao longo de um caminho diagonal no diagrama PV, mostrado na figura. Ele é, então, comprimido de volta a 4,0 m^3 ao longo, ou do caminho 1 ou do caminho 2. Os trabalhos resultantes por cada caminho, W, realizados sobre o gás para o ciclo completo são:

- a) W1 = -45 kJ, W2 = 45 kJ
- b) W1 = 45 J, W2 = 45 J
- c) W1 = 45 kJ, W2 = -45 kJ
- d) W1 = -120 J, W2 = -30 J
- e) W1 = 120 kJ, W2 = 30 kJ


- ar sair com maior temperatura com a boca aberta e com temperatura mais baixa quando fazemos biquinho? É exatamente o mesmo efeito que acontece com um desodorante spray que tem um jato sempre "geladinho". Uma explicação física para o que se observa no caso em que o ar está frio é o fato de que quando um gás:
- a) expande, perde energia na forma de trabalho, ou seja, cede energia mecânica, fazendo com que ele esfrie.
- b) sofre compressão, perde energia na forma de trabalho, ou seja, perde energia mecânica, fazendo com que ele esfrie.
- c) expande, ganha energia na forma de trabalho, ou seja, ganha energia mecânica fazendo com que ele esfrie.
- d) sofre compressão, ganha energia na forma de trabalho, ou seja, ganha energia mecânica, fazendo com que ele esfrie.
- e) expande, ganha energia na forma de calor, ou seja, cede energia térmica, fazendo com que ele esfrie.

QUESTÃO 02 (PSC UFAM 2011)

Um experimento simples, porém muito interessante, na área de Termodinâmica é descrito a seguir. Inspire e segure o ar por alguns segundos. Em seguida, dê uma baforada na palma da mão. Com certeza, o ar que sai da sua boca está "quente". Agora repita todo o procedimento, porém solte o ar fazendo biquinho, ou seja, dê uma sopradinha na palma da mão. Observe que o ar que sai da boca está "frio". Como pode o mesmo

QUESTÃO 03 (PSC UFAM 2013)

Um mol de um gás ideal realiza o ciclo termodinâmico indicado no diagrama p - V a seguir:

Analise as afirmativas a seguir:

- I. O processo AB é uma expansão isobárica e o trabalho realizado pelo gás é positivo
- II. O processo BC é isocórico e o gás absorve calor para que sua pressão aumente.
- III. No processo CA é realizado trabalho sobre o gás e sua energia interna aumenta.
- IV. Não há variação de energia interna do gás após o ciclo completo.
- V. A temperatura do gás no estado A é igual à sua temperatura no estado B.

Assinale a alternativa correta:

- a) Somente as afirmativas I, II e IV estão corretas.
- b) Somente as afirmativas I, II e V estão corretas.
- c) Somente as afirmativas I, III e IV estão corretas.
- d) Somente as afirmativas II e IV estão corretas.
- e) Somente as afirmativas II e V estão corretas.

QUESTÃO 04 (PSC UFAM 2013)

O Painel Intergovernamental sobre Mudanças do Clima (do inglês, Intergovernmental Panel on Climate Change, IPCC) foi criado pela Organização Meteorológica Mundial (OMM) e pelo Programa das Nações Unidas para o Meio Ambiente (do inglês, United Nations Environment Programme, UNEP) em 1988. O IPCC tem por objetivo estudar e divulgar abertamente as informações técnicas e socioeconômicas e os impactos relevantes aos riscos à humanidade, visando criar mecanismos para a adaptação e mitigação dos efeitos das mudanças climáticas globais. Em fevereiro de 2007 o IPCC divulgou os resultados do seu Quarto Relatório de Avaliação das Mudanças Climáticas (IPCC-AR4). Nele, o IPCC afirma que a temperatura média na superfície terrestre aumentou $(0, 74 \pm 0,$ 18) °C durante o século XX. Ainda, segundo o IPCC-AR4, a maior parte do2 aumento de temperatura observado desde meados do século passado foi causada por concentrações crescentes de gases de efeito estufa, como resultado de atividades humanas como a queima de combustíveis fósseis desflorestação. Modelos climáticos, referenciados pelo IPCC, projetam que temperaturas médias globais de superfície

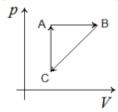
provavelmente aumentarão no intervalo entre 1,1 °C e 6,4 °C entre 1990 e 2100. Considerando que os aumentos de temperatura média divulgados pelo IPCC-AR4 representam, na realidade, diferenças entre as projeções de temperaturas médias globais entre 1990 e 2100, podemos afirmar que, na escala Fahrenheit, as temperaturas médias globais de superfícies aumentarão, respectivamente, no intervalo entre:

- a) 0,98 °F e 11,52 °F
- b) 0,98 °F e 43,52 °F
- c) 1,98 °F e 11,52 °F
- d) 32,98 °F e 42,52 °F
- e) 33,98 °F e 42,52 °F

QUESTÃO 05 (PSC UFAM 2014)

A mecânica trata com as energias mecânicas (externas) dos sistemas e é governada pelas leis de Newton. A termodinâmica trata com as energias internas dos sistemas e é governada por um conjunto de leis conhecidas como leis da termodinâmica. A termodinâmica estuda as relações entre quantidades de calor trocadas e os trabalhos realizados num processo físico envolvendo um sistema termodinâmico e o resto do universo. Sejam as seguintes afirmativas sobre as leis da termodinâmica:

- I. A segunda lei afirma que a energia total de um sistema isolado é constante.
- II. Em uma transformação adiabática, o trabalho realizado por um sistema gasoso é igual, em valor absoluto, à variação da energia interna.
- III. O trabalho realizado por um gás ao se expandir, sob pressão constante, é tanto maior quanto maior for a pressão e menor for a variação de volume.
- IV. Uma máquina térmica não pode funcionar sem queda de temperatura e nunca restitui integralmente, na forma de trabalho, a energia que lhe foi cedida sob a forma de calor.
- V. Todas as formas de energia (mecânica, elétrica, química, nuclear, etc.) tendem a se converter espontânea e integralmente na energia desordenada de agitação térmica.



Assinale a alternativa correta:

- a) Somente as afirmativas I, II e IV estão corretas
- b) Somente as afirmativas II, III e IV estão corretas
- c) Somente as afirmativas II, IV e V estão corretas
- d) Somente as afirmativas I, II, III e V estão corretas
- e) Somente as afirmativas II, III, IV e V estão corretas

QUESTÃO 06 (PSC UFAM 2014)

Um mol de gás ideal realiza o ciclo termodinâmico indicado no diagrama p - V a seguir:

O trabalho líquido realizado no ciclo ABCA é +1,0 J. Ao longo da trajetória AB, a variação da3 energia interna é +3,0 J , e o valor do trabalho realizado é +6,0 J. Ao longo da trajetória CA, a energia transferida para o gás na forma de calor vale +3,5 J. Destes dados, podemos afirmar que a energia transferida na forma de calor ao longo das trajetórias AB e BC valem, respectivamente:

- a) +6.0 J e -9.5 J
- b) -6,0 J e +9,5 J
- c) +9,0 J e +11,5 J
- d) +9,0 J e -11,5 J
- e) -9,0 J e -11,5 J

QUESTÃO 07 (PSC UFAM 2015)

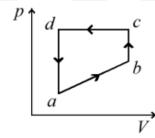
A pressão correta dos pneus é importante para segurança e garantia de melhor desempenho e durabilidade dos pneus. Os pneus devem ser calibrados somente quando estiverem frios, ou seja, quando estão na temperatura ambiente. Uma pressão abaixo ou muito acima da recomendada reduz a durabilidade do pneu, aumenta o consumo de combustível e favorece o risco de explosão e acidentes na pista. Considere a situação de certo motorista que, após trafegar algumas horas durante uma viagem numa estrada, resolveu parar num posto de combustível

para completar o tanque. Antes de seguir viagem, calibrou os pneus de seu carro, que se encontravam na temperatura de 57 °C, na pressão de 33 lbf/pol² (33 psi). Supondo que a variação do volume de cada pneu seja desprezível, podemos afirmar que a pressão do ar, considerado como gás ideal, em cada pneu no dia seguinte, a uma temperatura de 27 °C, será de:

- a) 15,6 psi
- b) 27 psi
- c) 30 psi
- d) 32 psi
- e) 31,3 psi

QUESTÃO 08 (PSC UFAM 2017)

Toda máquina térmica é um dispositivo que extrai energia, na forma de calor, de uma fonte quente e realiza trabalho útil, operando em ciclo. Nas máquinas a vapor, a substância de trabalho é a água, tanto na forma líquida quanto na forma de vapor. Nos motores de combustão interna, a substância de trabalho é a mistura de gasolina (ou álcool) e ar. Uma máquina térmica ideal, com rendimento máximo possível, era o objetivo perseguido por físicos e engenheiros na primeira metade do século XIX. Estudando as máquinas térmicas, o francês Nicolas Léonard Sadi Carnot (1796-1832) percebeu que uma diferença de temperatura era fundamental para o rendimento de toda máquina térmica, propondo teoricamente uma máquina térmica ideal (ou perfeita) que, trabalhando entre as fontes quente e fria, executaria uma transformação cíclica composta por duas transformações isotérmicas e duas adiabáticas transformações teria um rendimento máximo permitido. A importância da máquina de Carnot reside no fato de que nenhuma máquina real, trabalhando entre as temperaturas das fontes quente e fria, pode ter um rendimento maior que o da máquina de Carnot operando entre estas mesmas temperaturas. Considere a situação na qual uma máquina de Carnot, opera entre duas fontes térmicas, a quente na temperatura de 500 K e a fria (o ambiente) na

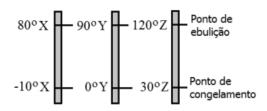


temperatura de 300 K. Se em cada ciclo, esta máquina rejeita 600 J de calor para a fonte fria, podemos afirmar que o trabalho realizado por ciclo e o rendimento dessa máquina de Carnot valem, respectivamente

- a) 400 J e 40%
- b) 40 J e 50%
- c) 500 J e 50%
- d) 600 J e 40%
- e) 600 J e 60%

QUESTÃO 09 (PSC UFAM 2018)

Certa quantidade de gás ideal é submetida ao ciclo indicado no diagrama p – V da figura a seguir. Quando passa do estado a para o estado b, o gás recebe 180 J de energia na forma de calor. Mais 80 J de energia na forma de calor são recebidos quando o gás passa de b para c, e a variação da energia interna do gás, ao passar de c para a ao longo da trajetória cda, é –200 J.


O trabalho realizado pelo gás quando passa do estado a para o estado b vale:

- a) 60 J
- b) -60 J
- c) 120 J
- d) -120 J
- e) 180 J

QUESTÃO 10 (PSC UFAM 2018)

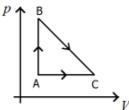
Um dos conceitos fundamentais da termodinâmica é o de temperatura. Parte integrante de nossas vidas, a temperatura é desprovida de dimensões físicas como o comprimento ou a massa de um corpo, já que só pode ser medida em termos de seus efeitos. Com o objetivo de dar sentido ao conceito de temperatura, foi formulada na década de 1930 a lei

zero da termodinâmica. Esta lei nos diz que todo corpo possui uma propriedade chamada temperatura. Quando dois corpos estão em equilíbrio térmico, suas temperaturas são iguais, e vice-versa. A lei zero é considerada uma descoberta tardia, pois foi estabelecida muito depois da primeira lei e da segunda lei da termodinâmica terem sido descobertas numeradas no século XIX. A figura a seguir mostra três escalas lineares de temperatura, com os pontos de congelamento e ebulição da água indicados: Podemos afirmar que:

- a) 50 °X > 50 °Y > 50 °Z
- b) 50 °X > 50 °Z > 50 °Y
- c) 50 °Y > 50 °Z > 50 °X
- d) 50 °Z > 50 °X > 50 °Y
- e) 50 °Z > 50 °Y > 50 °X

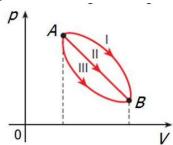
QUESTÃO 11 (PSC UFAM 2019)

De acordo com as leis da termodinâmica, o corpo humano pode ser comparado a uma máquina térmica. A energia que utilizamos é obtida a partir das reações de oxidação. Durante os diferentes tipos de oxidação, há liberação de energia, cuja quantidade depende da reação em particular. Considerando a situação na qual, em um dia, determinada pessoa consome 2400 kcal de energia e dissipa, através da respiração e da pele, 480 kcal para o ambiente, podemos afirmar que o rendimento dessa "máquina humana" foi de:


- a) 20%
- b) 40%
- c) 67%
- d) 80%
- e) 83%

QUESTÃO 12 (PSC UFAM 2019)

Certa amostra de um gás ideal passa do estado inicial A para o estado final C através de duas trajetórias, conforme indicado no diagrama p – V da figura a seguir:

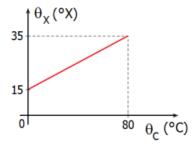


Ao longo da trajetória AC o gás recebeu uma quantidade de calor igual a $4p_AV_A$, com $V_C=3V_A$. Ao longo da trajetória ABC, uma quantidade de calor igual a $4,5p_AV_A$ foi transferida ao gás. A partir destas informações, podemos afirmar que a razão p_B/p_A é igual a:

- a) 1/2
- b) 3/2
- c) 2
- d) 5/2
- e) 7/2

QUESTÃO 13 (PSC UFAM 2020)

Entre dois estados quaisquer de um gás, uma infinidade de processos pode ser considerada e, portanto, uma infinidade de valores para o trabalho realizado. Sendo assim, o trabalho realizado numa transformação termodinâmica depende não só dos estados inicial e final como também dos estados intermediários, isto é, do caminho entre os estados inicial e final. Analise a figura a seguir:


Entre os estados indicados por A e por B, assinale a alternativa **CORRETA**, de acordo com a relação entre os trabalhos realizados nos três caminhos:

a) |=||=|||

- b) |>||=|||
- c) |=|||>||
- d) |>||>||
- e) |||>||>|

QUESTÃO 14 (PSC UFAM 2020)

O gráfico a seguir apresenta uma escala termométrica X que se relaciona com a escala Celsius, tal que o eixo das ordenadas representa os valores de X (temperaturas expressas na escala X) e o eixo das abscissas os valores de C (temperaturas expressas na escala Celsius):

Assinale a alternativa correta:

- a) A equação de conversão entre as duas escalas é θ . $X = 0, 5\theta$ C + 15
- b) Quando a temperatura for 50 °C, a temperatura registrada por um termômetro graduado na escala X será de 30 °X.
- c) Há uma temperatura em que os dois termômetros (graduados na escala X e na escala Celsius, respectivamente) registram valores que coincidem numericamente. O valor numérico desta temperatura é 25.
- d) Quando o termômetro graduado na escala X registrar 10 °X, um termômetro graduado na escala Celsius mostrará o valor de -20°C.
- e) Não há uma temperatura em que os dois termômetros (graduados na escala X e na escala Celsius, respectivamente) registram valores que coincidem numericamente.

QUESTÃO 15 (PSC UFAM 2021)

Considere a situação na qual um cilindro de oxigênio hospitalar com 50 L de capacidade, com o gás à pressão interna de 96 atm e à temperatura de 300 K, vai ser utilizado para manter a saturação

de oxigênio de um paciente em níveis adequados. Considerando o oxigênio como um gás ideal, podemos afirmar que se o consumo de oxigênio for regulado para fornecer 5, 0 L/min, à pressão de 2, 4 atm e à temperatura de 300 K, o intervalo de tempo até que a pressão interna do cilindro fique reduzida ao valor de 2, 4 atm será de:

- a) 6h15min
- b) 6h20min
- c) 6h30min
- d) 6h40min
- e) 6h45min

Blazuedu

- 1. A
- 2. *A*
- 3. A
- 4. (
- 5. C
- 6. D
- 7 C
- 8. A
- 9. A
- 10. A
- 11. D
- 12. B
- 13. D
- 14. D
- 15. C

3 lazuedu